Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks.

نویسندگان

  • Lilach Moyal
  • Yaniv Lerenthal
  • Mali Gana-Weisz
  • Gilad Mass
  • Sairei So
  • Shih-Ya Wang
  • Berina Eppink
  • Young Min Chung
  • Gil Shalev
  • Efrat Shema
  • Dganit Shkedy
  • Nechama I Smorodinsky
  • Nicole van Vliet
  • Bernhard Kuster
  • Matthias Mann
  • Aaron Ciechanover
  • Jochen Dahm-Daphi
  • Roland Kanaar
  • Mickey C-T Hu
  • David J Chen
  • Moshe Oren
  • Yosef Shiloh
چکیده

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Phosphorylation of Histone H2B at DNA Double-Strand Breaks

Posttranslational modifications of histone tails regulate numerous biological processes including transcription, DNA repair, and apoptosis. Although recent studies suggest that structural alterations in chromatin are critical for triggering the DNA damage response, very little is known about the nature of DNA damage-induced chromatin perturbations. Here we show that the serine 14 residue in the...

متن کامل

DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A.

Chromatin changes within the context of DNA repair remain largely obscure. Here we show that DNA damage induces monoubiquitylation of histone H2A in the vicinity of DNA lesions. Ultraviolet (UV)-induced monoubiquitylation of H2A is dependent on functional nucleotide excision repair and occurs after incision of the damaged strand. The ubiquitin ligase Ring2 is required for the DNA damage-induced...

متن کامل

Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis.

An E2 ubiquitin-conjugating enzyme, Rad6, working with an E3 ubiquitin ligase Bre1, catalyzes monoubiquitylation of histone H2B on a C-terminal lysine residue. The rad6 mutant of Saccharomyces cerevisiae shows a meiotic prophase arrest. Here, we analyzed meiotic defects of a rad6 null mutant of budding yeast. The rad6 mutant exhibits pleiotropic phenotypes during meiosis. RAD6 is required for e...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2011